

Advancing ARGX-113 and ARGX-110 to clinical proof of concept

Hans de Haard, CSO argenx Nicolas Leupin, CMO argenx Carsten Riether, PhD, University of Bern

4 December 2016

Disclaimer

THIS PRESENTATION IS BEING PROVIDED TO YOU SOLELY FOR YOUR INFORMATION. BY ATTENDING THE MEETING WHERE THIS PRESENTATION IS MADE YOU AGREE TO BE BOUND BY THE FOLLOWING TERMS AND CONDITIONS. THIS PRESENTATION, WHICH HAS BEEN PREPARED BY ARGEN-X N.V. (THE "COMPANY") MAY NOT BE REPRODUCED IN ANY FORM, FURTHER DISTRIBUTED OR PASSED ON, DIRECTLY OR INDIRECTLY, TO ANY OTHER PERSON, OR PUBLISHED, IN WHOLE OR IN PART, FOR ANY PURPOSE. ANY FAILURE TO COMPLY WITH THESE RESTRICTIONS MAY CONSTITUTE A VIOLATION OF APPLICABLE SECURITIES LAWS.

For the purposes of this notice, "presentation" means this document, its contents or any part of it, any question or answer session and any written or oral material discussed or distributed in connection with this presentation either before, after or during the presentation meeting.

This presentation does not, and is not intended to, constitute or form part of, and should not be construed as, an offer to sell, or a solicitation of an offer to purchase, subscribe for or otherwise acquire, any securities of the Company, nor shall it or any part of it form the basis of or be relied upon in connection with or act as any inducement to enter into any contract or commitment or investment decision whatsoever. This presentation is not an offer of securities for sale in the United States. The securities of the Company have not been and will not be registered under the US Securities Act of 1933, as amended (the "Securities Act") or with any securities regulatory authority of any state or other jurisdiction of the United States and may not be offered or sold in the United States unless registered under the Securities Act or pursuant to an exemption from such registration.

This presentation is made available on the express understanding that it does not contain all information that may be required to evaluate, and will not be used by the attendees/recipients in connection with, the purchase of or investment in any securities of the Company. This presentation is accordingly not intended to form the basis of any investment decision and does not constitute or contain (express or implied) any recommendation by the Company or any of its directors, officers, employees, agents, affiliates or advisers.

Certain information in this presentation is based on management estimates. Such estimates have been made in good faith and represent the current beliefs of applicable members of management. Those management members believe that such estimates are founded on reasonable grounds. However, by their nature, estimates may not be correct or complete. Accordingly, no representation or warranty (express or implied) is given that such estimates are correct or complete.

This presentation may include statements that are, or may be deemed to be, "forward-looking statements". These forward-looking statements can be identified by the use of forward-looking terminology, including the terms "believes", "estimates", "anticipates", "expects", "intends", "may", "will", or "should", and include statements the Company makes concerning the intended results of its strategy. By their nature, forward-looking statements involve risks and uncertainties and readers are cautioned that any such forward-looking statements are not guarantees of future performance. The Company's actual results may differ materially from those predicted by the forward-looking statements. The Company undertakes no obligation to publicly update or revise forward-looking statements, except as may be required by law.

Agenda

11:00 AM	Introduction
	- Hans de Haard, CSO argenx
11:10 AM	ARGX-113 targeting FcRn
	Advancing to clinical proof of concept in ITP
	- Nicolas Leupin, CMO argenx
	- Hans de Haard, CSO argenx
11:35 AM	ARGX-110 targeting CD70
	Phase 1 mono & combo therapy in TCL & AML
	- Nicolas Leupin, CMO argenx
	- Carsten Riether, University of Bern

Hans de Haard

Nicolas Leupin

12:15 AM Q&A

Introduction

Creating value from highly differentiated antibodies

Rich proprietary pipeline

- Cancer & severe autoimmune diseases
- 4 products in clinical phase

Thriving strategic alliances

- Industrial partners
- Innovative Access Program

Competitive technology suite

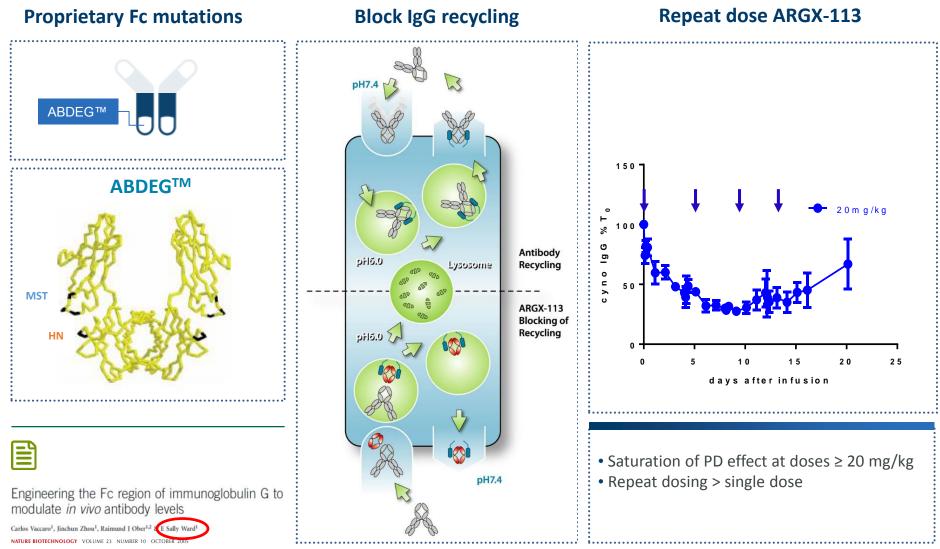
- Antibodies with differentiated modes of action
- Based on Ilama immune system and unique Fc engineering

Strong financials

- Strong cash position € 103Mio Sept 2016
 (AbbVie € 35MM April 2016, Private Placement € 30MM June 2016)
- > € 2B potential future income from partnerships

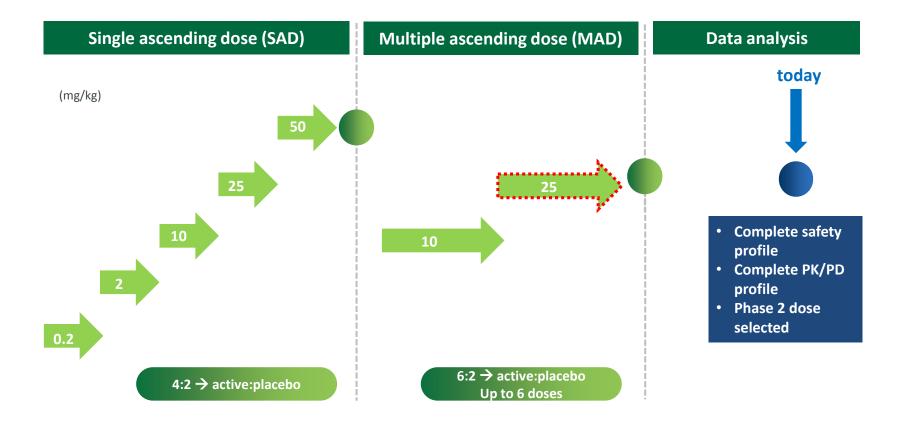
Proprietary pipeline in cancer and severe autoimmunity

		Drug candidate	Target	Indication	Pre-clinical	Phase 1	Phase 2
Autoimmune diseases	*	ARGX-113	FcRn	Myasthenia Gravis Immune Thrombocytopenia			4Q 2016 1Q 2017
Cancer immunotherapy		ARGX-110	CD70	T-Cell Lymphoma Acute Myeloid Leukemia			4Q 2016 4Q 2016
Metastatic cancer	*	ARGX-111	c-MET	Solid tumors Blood cancer			
	*	Discovery Undisclosed		Multiple			
	abbvie	ARGX-115	GARP	Cancer Immunotherapy			
Partnered, non-		ARGX-109 Gerilimzumab	IL-6	Autoimmunity			
dilutive income		Undisclosed		Skin inflammation			
	Shire	Undisclosed		Undisclosed			


80107

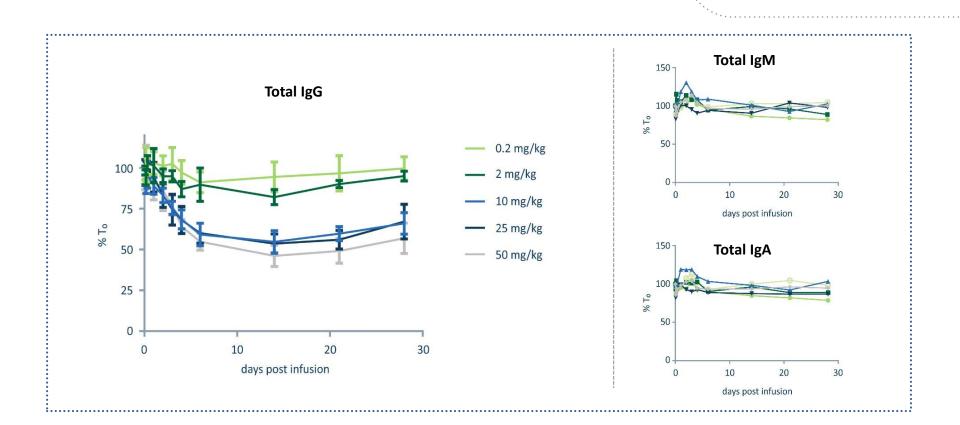
ARGX-113: Advancing to clinical proof of concept

ARGX-113: Lead program targeting autoimmune diseases


Mechanism of action – antagonizing FcRn

ARGX-113: Favorable safety and tolerability profile observed

Phase I study design & status



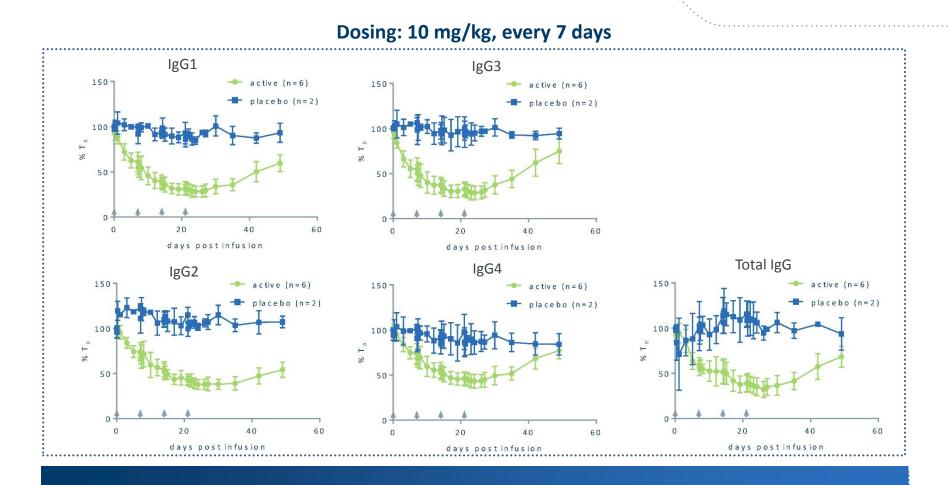
- Double-blind, placebo-controlled study in healthy volunteers
- SAD & MAD dosing completed according to plan (62 healthy volunteers in total)
- Favorable safety and tolerability profile observed

ARGX-113: Selective IgG reduction

Single ascending dose escalation study (SAD) in healthy volunteers

- Single 2h infusion: selective IgG reduction, not affecting IgM/IgA and albumin levels (not shown)
- Maximal PD effect (~50% IgG reduction) as of 6 days after infusion
- Low IgG levels maintained for several weeks
- Saturation of PD effect as of 10 mg/kg dose

Source: argenx data - blinded, uncleaned from HV study

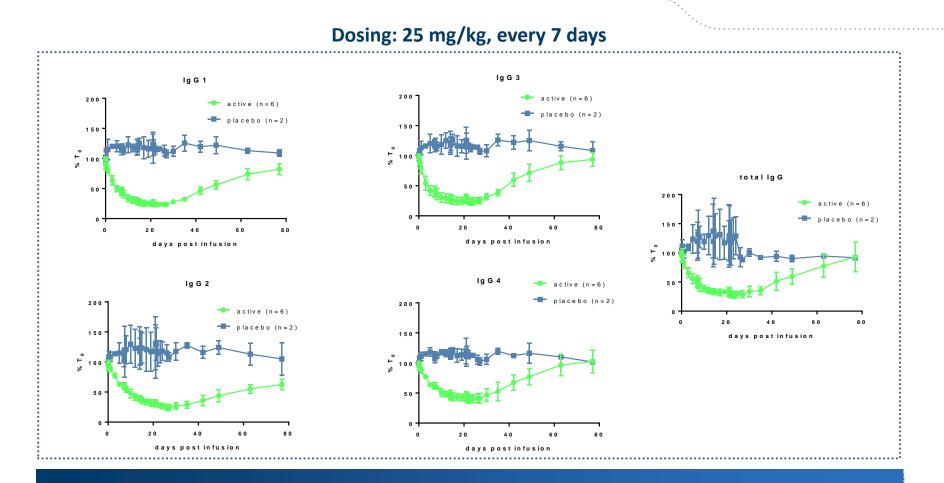

٠

٠

ARGX-113: Potent reduction of IgGs across isotypes

argenx

PD data multiple ascending dose (MAD) study



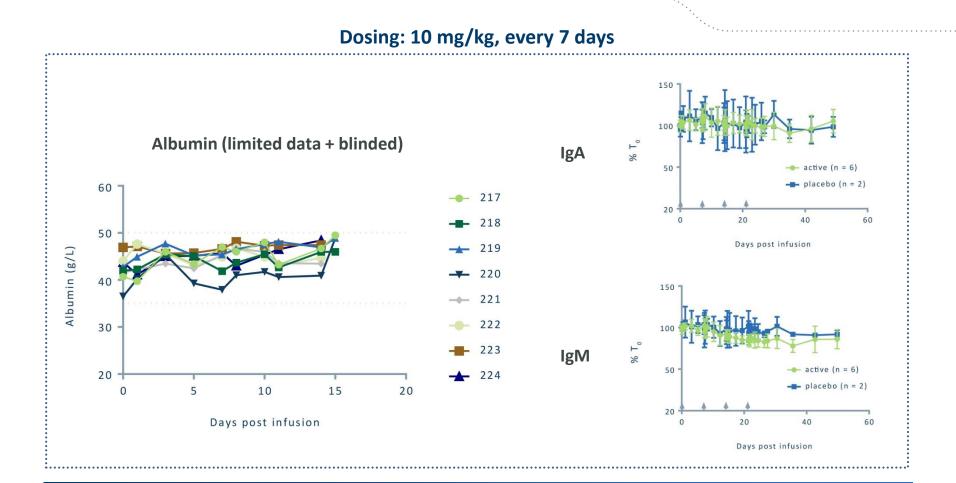
- Clinically meaningful IgG reduction: 50% achieved in 1 week; up to 85% maximum reduction
- After the last dosing, IgG levels remain reduced by 50% or more for a period of 3 weeks
- After the last dosing, IgG levels return to baseline in > 1 month

Source: argenx data – blinded, uncleaned from HV study

ARGX-113: Potent reduction of IgGs across isotypes

Similar PD pattern with higher concentration

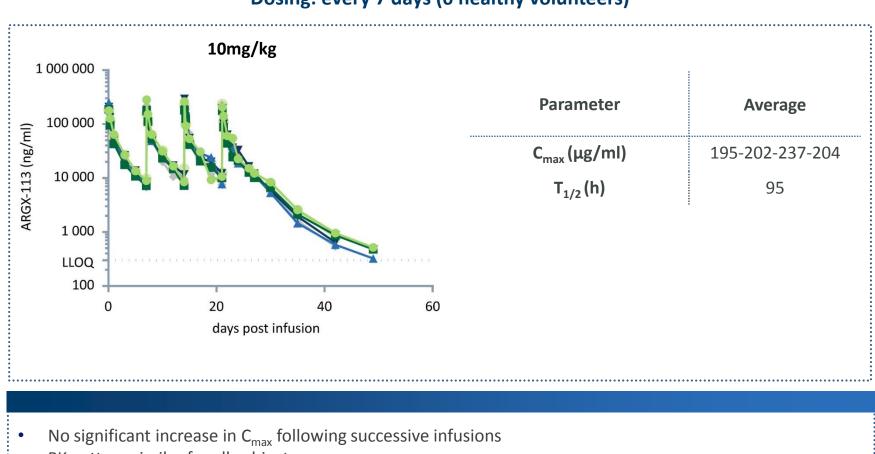
- Clinically meaningful IgG reduction: 50% achieved in 1 week; up to 85% maximum reduction
- After the last dosing, IgG levels remain reduced by 50% or more for a period of 3 weeks
- After the last dosing, IgG levels return to baseline in > 1 month


Source: argenx data – blinded, uncleaned from HV study

argenx

ARGX-113: Selective reduction of IgGs

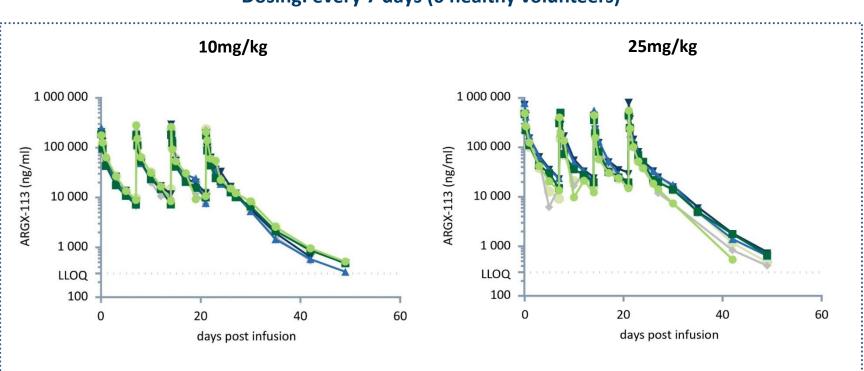
Albumin, IgA and IgM levels not affected after multiple dosing



- Albumin, IgA and IgM levels not affected
- Comparable results for all dosing regimens

ARGX-113: Consistent clearance pattern with half-life 3-4 days

Similar PK pattern for 10mg/kg vs 25mg/kg


Dosing: every 7 days (6 healthy volunteers)

- PK pattern similar for all subjects
- Terminal half-life 3-4 days (similar to SAD)

ARGX-113: Consistent clearance pattern with half-life 3-4 days

Similar PK pattern for 10mg/kg vs 25mg/kg

Dosing: every 7 days (6 healthy volunteers)

- Similar PK pattern for both concentrations
- Maximal PD effect at 10 mg/kg
- → '10 mg/kg every 7 days' selected dosing regimen for Phase II clinical trials

Source: argenx data - blinded, uncleaned from HV study

Across multiple doses and dosing regimes in 68 healthy volunteers

Single ascending dose escalation study (SAD), 0.2, 2.0, 10, 25 and 50 mg/kg

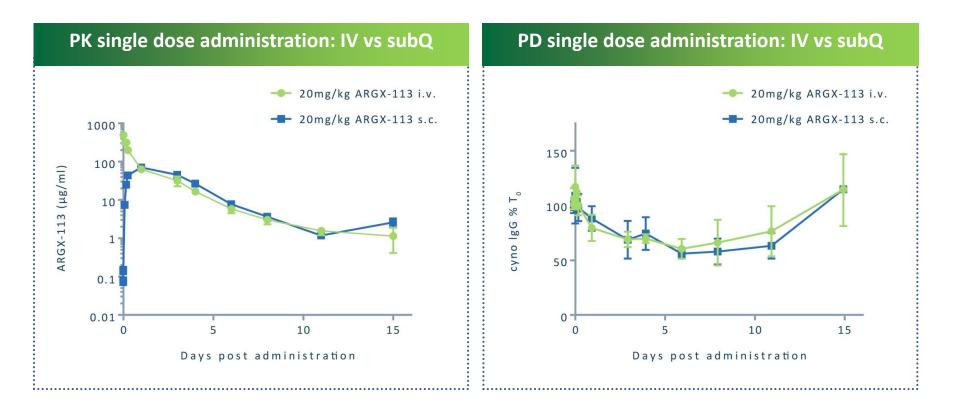
- No cutaneous reactions at injection site
- No infusion related reactions
- No severe or serious adverse event
- No adverse events leading to death

Multiple ascending dose escalation study (MAD), 10 mg/kg q4d and q7d

- No cutaneous reactions at injection site
- No infusion related reaction
- One severe adverse event*
- No adverse events leading to death

*One grade 3 adverse event was declared as serious adverse event, according to investigator likely to be unrelated to study drug

Preliminary, blinded results indicate that IV administration of single and multiple doses of ARGX-113 at doses up to 25 mg/kg is safe and generally well tolerated

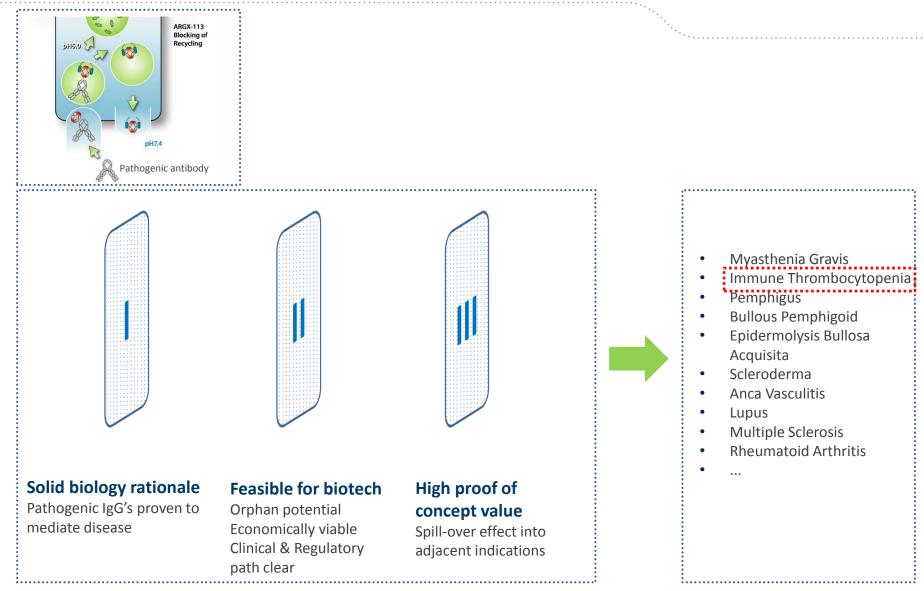


ARGX-113, further development

ARGX-113: Feasibility subQ dosing proven

Cynomolgus PoC: comparable PD and PK profiles for IV and subQ administration

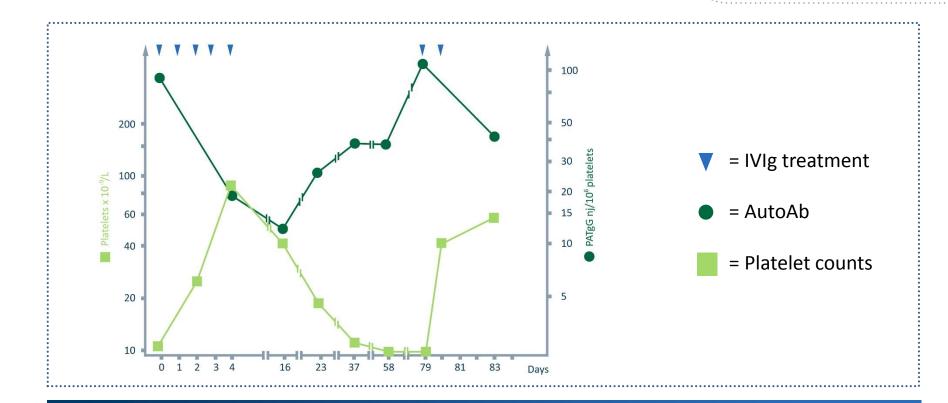
- IV versus subQ dosing:
 - Comparable half life
 - Favorable bio-availability of the compound in subQ dosing
 - Comparable reduction of IgG's with single dose; up to 50%



ARGX-113 in Immune Thrombocytopenia

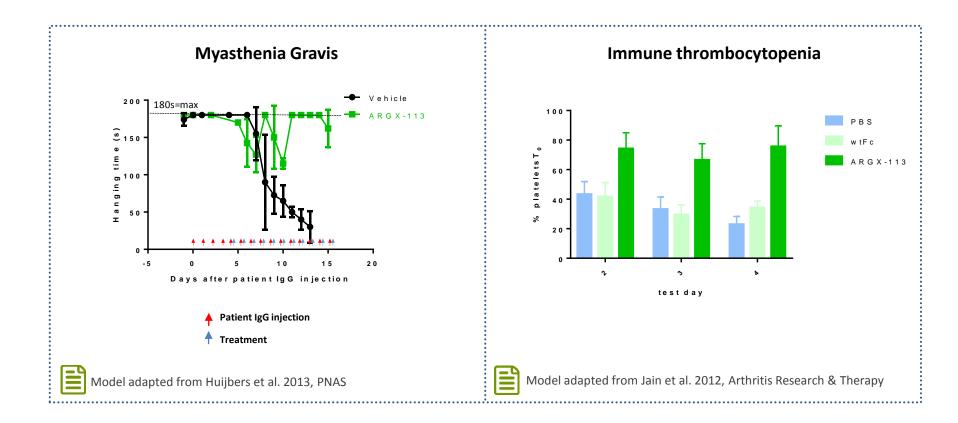
ARGX-113: Pipeline-in-product opportunity

Prioritizing IgG mediated diseases

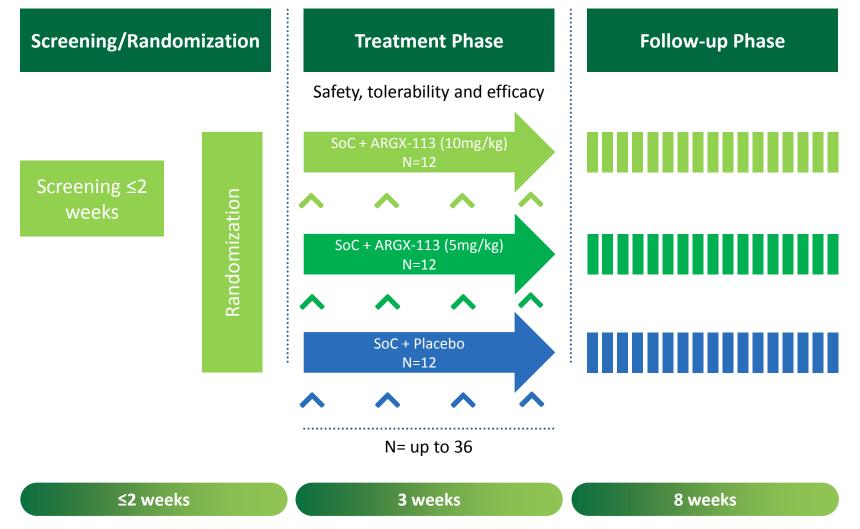


Immune thrombocytopenia: Fact sheet

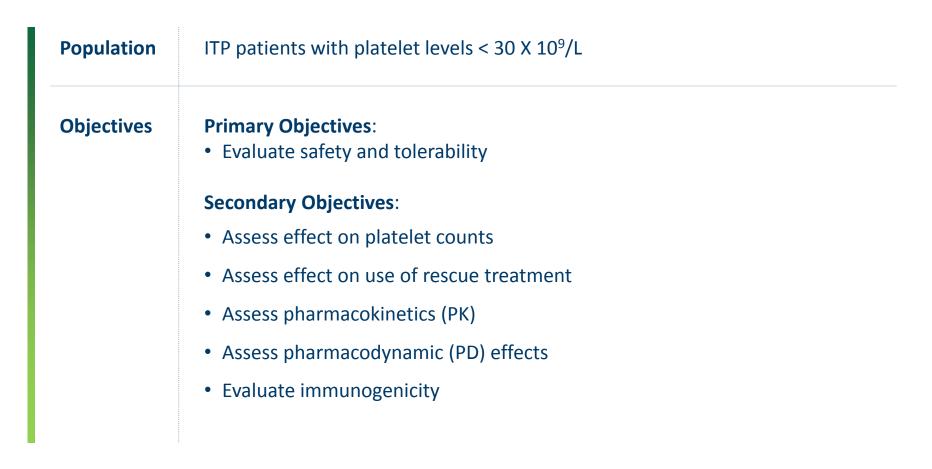
	Fatigue Emotional stra Impact on work Fear (bleeding Impact on social activities Bruisir	 of Rare disease Prevalence (US): 50,000 patients
Platelets Platelets Bone narrow	 Caused by auto- antibodies (auto-IgG's) destroying blood platelets: Increased platelet removal Reduced platelet production 	 Treatment options: Multiple iterations on corticosteroids & IVIg Immunomodulatory agents TPO-mimetics & splenectomy Side effects: anaphylaxis arcred backache Cancer cataracts depression diabetes rate Lendysch hepatitis hypertension infection infusion reactions/sevenepedagesty nausea osteoporosis pychoas
•	 Addressing unmet n Elimination of Minimizing side Potential use in patie 	ugh approach to clear pathogenic auto-IgG's eed patient symptoms → achieve remission e effects of medication ents with inadequate response to steroids & re second line agents


Autoantibody levels (IgGs) correlate with ITP disease score

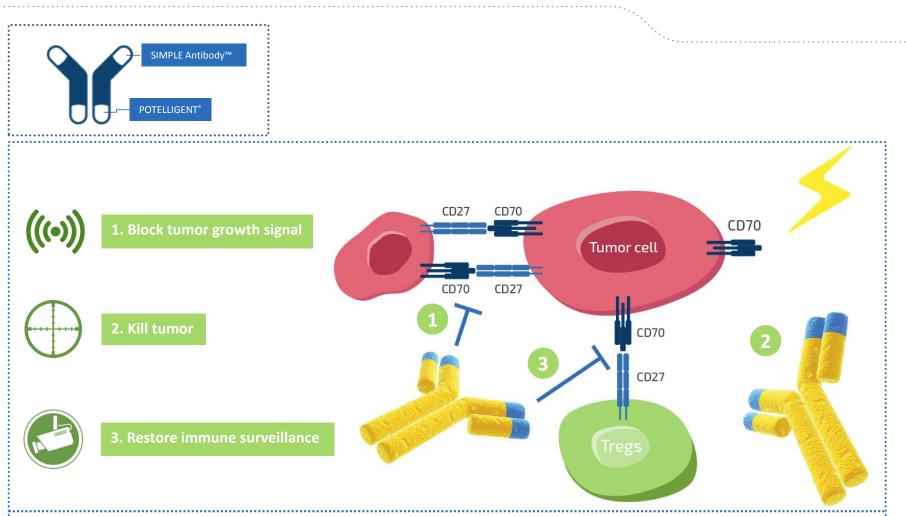
- ITP: autoantibodies inhibit platelet production and accelerate platelet destruction
- IVIg, plasmapheresis and immunoadsorption: proven clinical efficacy in ITP
- MoA IVIg: lowering autoantibodies results in platelet increase
- Plasmapheresis and immunoadsorption: identical MoA (data not shown)



Proof of concept in mouse models for MG and ITP



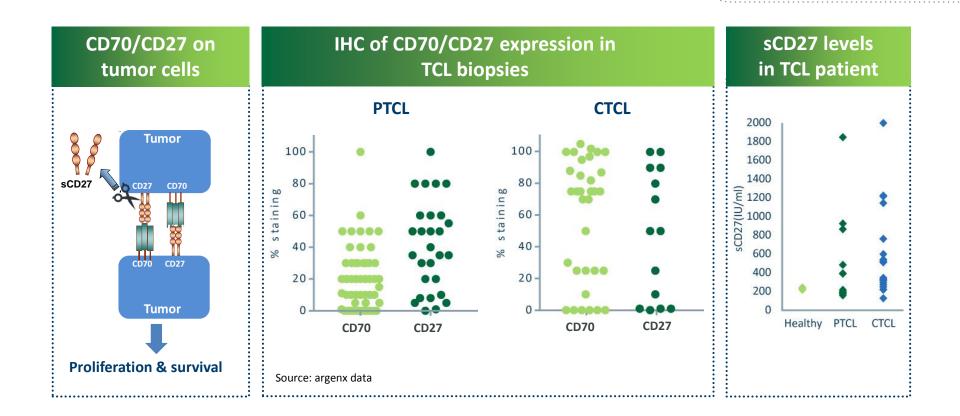
- MG model: ARGX-113 maintains muscle strength in murine MuSK-MG antibody-transfer model
- ITP model: ARGX-113 ameliorates anti-platelet antibody-induced ITP in a pilot murine study



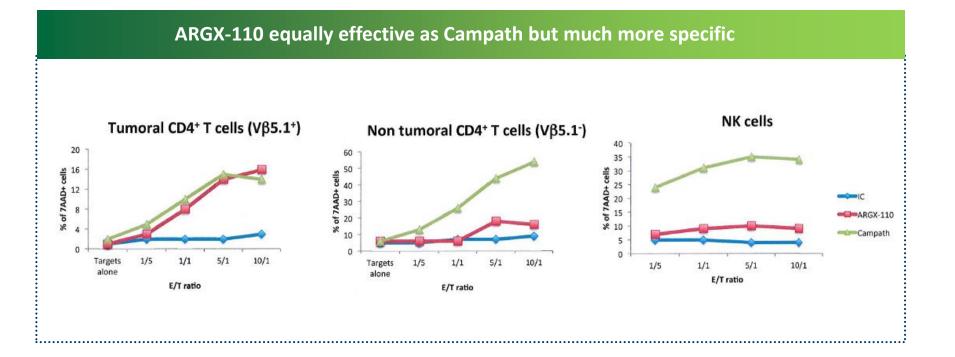
ARGX-110: Phase I/II mono & combo therapy

ARGX-110: targets CD70

argenx


3 distinct modes of action to address tumor cell

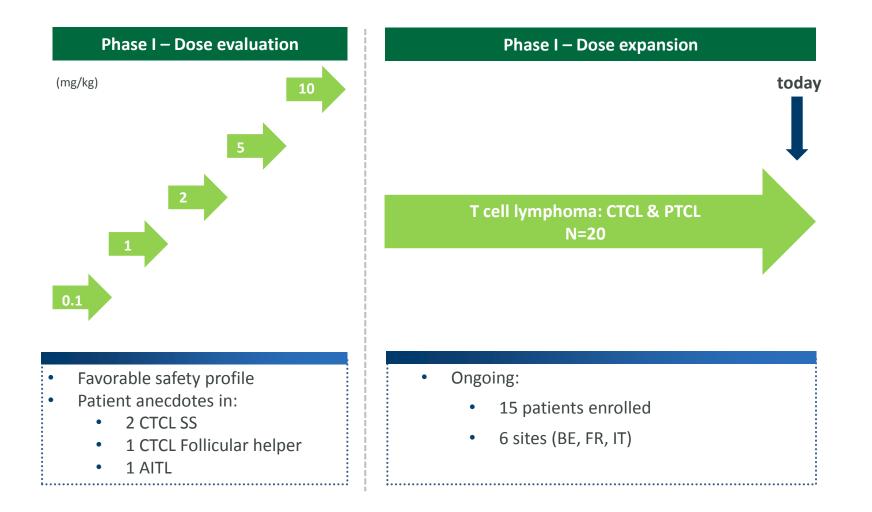
Prof. Ochsenbein won the 'Otto Naegeli Prize 2016', the most highly esteemed biomedical award in Switzerland. "Of particularly great importance was the discovery that the interaction of CD70 with CD27 and subsequent signaling events has great therapeutic potential for the development of new, original methods of cancer treatment using immunotherapy."


ARGX-110: CD70/CD27 pathway highly relevant in TCL

- CD70/CD27 strongly overexpressed across different TCL types
- Elevated sCD27 levels suggest strong pathway activity in TCL

Kills TCL tumor cells without affecting healthy cells

- Campath: depleting both tumoral and non-tumoral T-cells & NK cells
- ARGX-110: selective killing of malignant Sézary CD4⁺ cells



ARGX-110 in TCL

「「ななななななななななし」」」としい

CRAFFFE CONTRACTOR

Overview CTCL patients

ARGX-110 Phase Ib

CTCL in Dose Escalation (0.1-10 mg/kg) and Expansion Cohort 1 (5 mg/kg)

Indication	Dose	C1	C2	С3	C4	C5	C6	C7	C8	С9	C10	C11	C12	C20	Best response
	mg/kg														
CTCL	0.1														SD in skin; CR in blood
CTCL	10														PD based on blood assessment
CTCL	5														SD in skin; decrease skin lesions in # and size

CTCL in Expansion Cohort 2 (1 mg/kg q3w)

Indication	Stage	C1	C2	C3	C4	C5	C6	C7	C8	С9	C10	C11	C12	C20	Best response
CTCL-MF	T4, N0,														SD in skin, mSWAT 个18%
	M0, B0														
CTCL-MF/SS + (PTCL-NOS)	T4, N3,														SD nodal, PD skin 个63.5%
	M0, B0														
CTCL-SS	T4, N3,														PD?, mSWAT 个4%
	M0, B1														
CTCL-MF	T4, Nx,														SD nodal and skin, mSWAT \downarrow 42%
	M0, B0														
CTCL-SS	T4, Nx,														PR in skin, SD nodal and blood,
	M0, B2														mSWAT ↓50% C4
CTCL-MF	T2, N0,														PR in skin, mSWAT \downarrow 62% C6
	M0, B0														
CTCL-SS	T2, Nx,														PD
	M0, B2														
CTCL-TFH like	T2, N0,														PD in skin 个56%
	M0, B0														
CTCL-panniculitis like	T3, N0,														PR in skin by PET/CT
	M0, B0														
CTCL-MF	T4, Nx,														PD
	M0, B0														

Definition of Global response in CTCL

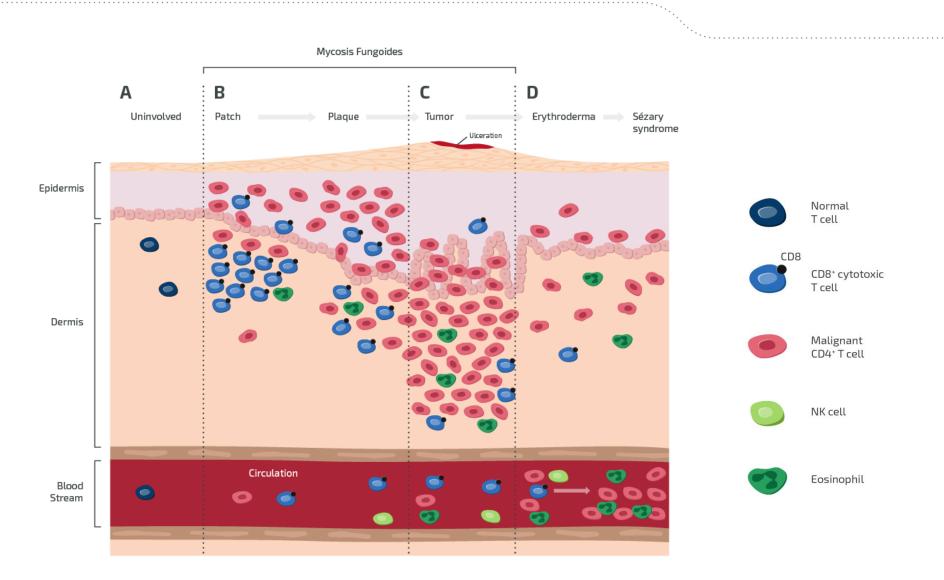
Global Score [*]	Definition	Skin	Nodes	Blood	Viscera
CR	Complete disappearance of all clinical evidence of disease	CR		All categories ha	ve CR/NI
PR	Regression of measurable disease	CR	All categories	do not have a CR/N	and no category has a PD
		PR		ory has a PD and if ar aseline, at least one	ny category involved at has a CR or PR
SD	Failure to attain CR, PR, or PD representative of all disease	PR	No catego	ory has a PD and if ar baseline, no CR oi	ny category involved at ⁻ PR in any
		SD	CR/NI, PR,	SD in any category a	nd no category has a PD
PD	Progressive disease			PD in any cat	egory
Relapse	Recurrence disease in prior CR			Relapse in any o	category

Response	Definition
Complete response	100% clearance of skin lesions
Partial response	50%-99% clearance of skin disease from baseline without new tumors (T_3) in patients with T_1 , T_2 or T_4 only skin disease
Stable disease	< 25% increase to < 50% clearance in skin disease from baseline without new tumors (T_3) in patients with T_1 , T_{2} , or T_4 only skin disease
Progressive disease [±]	≥ 25% increase in skin disease from baseline or
	New tumors (T ₃) in patients with T ₁ , T ₂ or T ₄ only skin disease or
	Loss of response: in those with complete or partial response, increase of skin score of greater than the sum of nadir plus 50% baseline score
Relapse	Any disease recurrence in those with complete response

ARGX-110 Phase Ib

CTCL in Expansion Cohort 2 (1 mg/kg q3w)

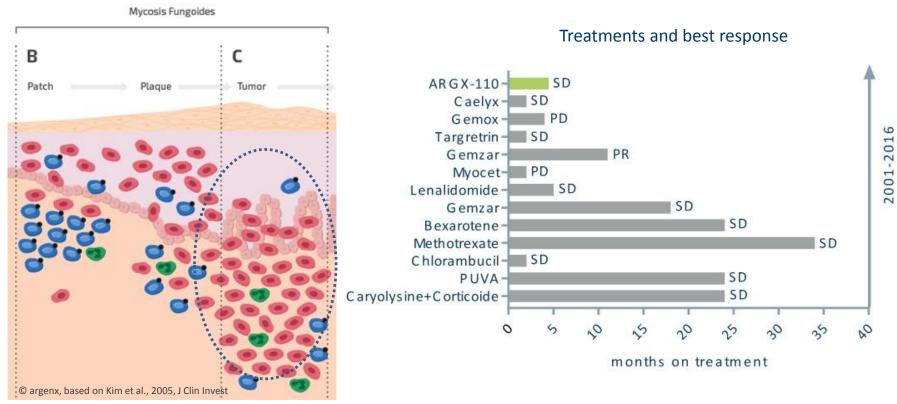
Indication	Stage	C1	C2	C3	C4	C5	C6	C7	C8	С9	C10	C11	C12	C20	Best response	1
CTCL-MF	T4, N0,														SD in skin, mSWAT 个18%	
CTCL-MF/SS + (PTCL-NOS)	M0, B0 T4, N3,														SD nodal, PD skin 个63.5%	
CTCL-SS	M0, B0 T4, N3, M0, B1														PD?, mSWAT 个4%	
CTCL-MF	T4, Nx, M0, B0														SD nodal and skin, mSWAT \downarrow 42%	Patient 1, #37
CTCL-SS	T4, Nx, M0, B2														PR in skin, SD nodal and blood, mSWAT ↓50% C4	Patient 3, #41
CTCL-MF	T2, N0, M0, B0														PR in skin, mSWAT ↓62% C6	Patient 2, #39
CTCL-SS	T2, Nx, M0, B2														PD	
CTCL-TFH like	T2, N0, M0, B0														PD in skin 个56%	
CTCL-panniculitis like	T3, N0, M0, B0														PR in skin by PET/CT	Patient 4, #42
CTCL-MF	T4, Nx, M0, B0														PD	


• Encouraging signs of clinical activity in expansion cohort 2: 2/10 SD and 3/10 PR

- Patients on study up to cycle 12
- 2/3 SD in dose escalation cohort

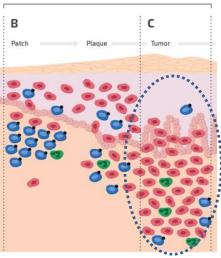
Cutaneous TCL

Progression from Patch to Sézary Syndrome

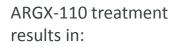


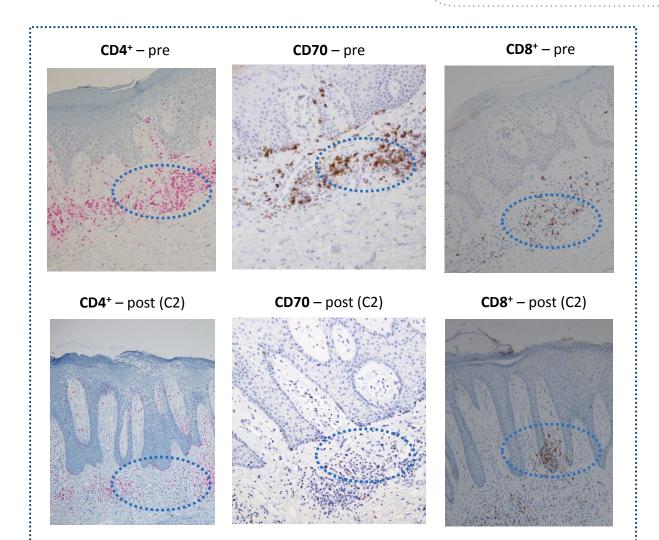
ARGX-110: Activity in heavily treated TCL patients

Patient 1 (2101): Cutaneous TCL – Mycosis fungoides (MF)


Patient	67 year old man with CTCL-MF, diagnosed on 21 Jan 2001			
Tumor	Skin T4, Nx, M0, B0 (Stage IIIA)			
Nr doses	6, off study because of QTc prolongation			

Malignant cells in the skin disappear after one dose

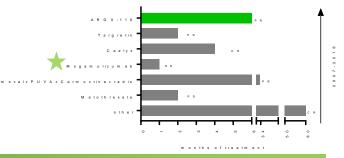

Patient 1 (2101): Cutaneous TCL – Mycosis fungoides (MF)



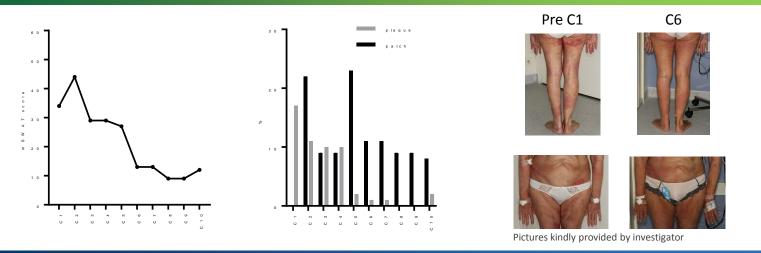
Mycosis Fungoides

© argenx, based on Kim et al., 2005, J Clin Invest

- decrease of CD4⁺ malignant T-cells
- depletion of CD70⁺ malignant T-cells
- infiltration of CD8⁺ T-cells



Partial response: improved mSWAT and skin lesions


Patient 2 (2103): Cutaneous TCL – Mycosis fungoides (MF)

Patient	79 year old female with CTCL-MF, diagnosed 2007
Tumor	Skin T2, N0, M0, B0 (stage IB)
Doses	10, ongoing, 1 mg/kg q3w

Treatments and best response

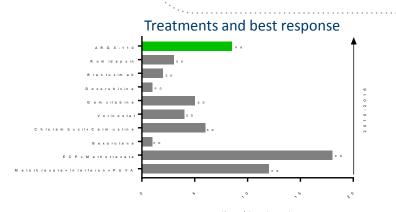
Reduced mSWAT score and total body lesions

- Cutaneous tumor lesions decrease in surface area; 60% reduction of mSWAT and a partial response (PR)
- Cutaneous tumor lesions improve from plaques to patches

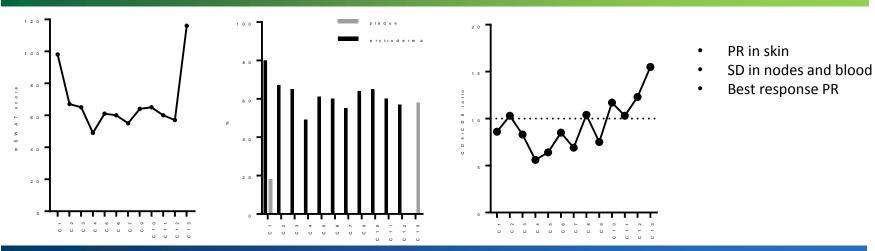
Partial response

Patient 2 (2103): Cutaneous TCL – Mycosis fungoides (MF)

Post - C6

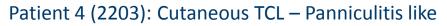

Pictures kindly provided by investigator

Stable disease: Improved mSWAT and skin lesions

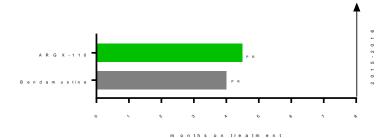


Patient 3 (2102): Cutaneous TCL – Sézary-Syndrome (SS)

Patient	55 year old female with CTCL-SS, diagnosed 2010
Tumor	Skin T4, Nx, M0, B2 (stage IV)
Doses	12, 1 mg/kg q3w, off study due to PD



mSWAT score, total body lesions and CD4/CD8 ratio in blood


- Cutaneous tumor lesions decrease in surface area; 50% reduction of mSWAT and a partial response (PR)
- Cutaneous tumor lesions improve from plaques to erythroderma, but increased plaque at PD

Partial respons: improvement subcutaneous lesions

Patient	84-year old female, diagnosed June 2015			
Tumor	Skin T3, Nodal N0, Visceral M0, Blood B0			
Nr doses	6, ongoing			

Treatments and best response

Overview

	Prescreen	C1	C2	С3	C4	С5	C 6	C7
FDG-PET global response in skin			c2d20 SD		C4D1 SD		c6d1 PR	
IHC CD70%	Fresh, cutaneous 51-75%, 3+, mc					No tumor cells detected		

ARGX-110: TCL patients Ph I study

Favorable safety profile

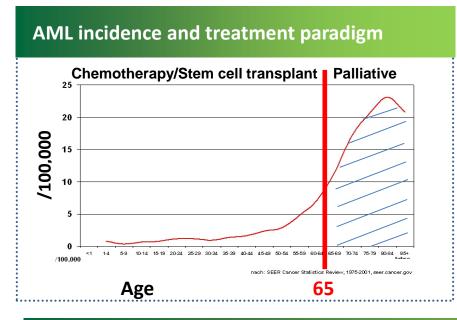
Grade 3-4 toxicities in TCL						
AE	0.1 mg/kg	1 mg/kg	5 mg/kg	10 mg/kg		
Anemia			4*			
Thrombocytopenia			2			
Febrile neutropenia			1			
Confusion			1			
General degradation	1					
Fever & shivers		1				
Inferior limbs Edema				1		
Scrotal Edema				1		
Pseudomonas infection		1				
QTC prolongation		1				
Vasculopathy **			1			
Total N patients (#21)	1	14	5	1		

- Favorable safety profile for heavily pretreated TCL patient population
- No major trends in terms of safety between the main dose groups (1mg/kg and 5mg/kg)
- Overall two grade 5 toxicities observed: 1 at 5mg/kg (pneumonia) and 1 at 10mg/kg (sepsis)

1 patient 3 AE anemia and 2 AEThrombocytopenia **Undosed** patient

Proprietary pipeline in cancer and severe autoimmunity

_		Drug candidate	Target	Indication	Pre-clinical	Phase 1	Phase 2
Autoimmune diseases	•	ARGX-113	FcRn	Myasthenia Gravis Immune Thrombocytopenia			4Q 2016 1Q 2017
Cancer immunotherapy	*	ARGX-110	CD70	T-Cell Lymphoma Acute Myeloid Leukemia			4Q 2016 4Q 2016
Metastatic cancer		ARGX-111	c-MET	Solid tumors Blood cancer			
		Discovery Undisclosed		Multiple			
	abbvie	ARGX-115	GARP	Cancer Immunotherapy			
Partnered, non-		ARGX-109 Gerilimzumab	IL-6	Autoimmunity			
dilutive income	LEO	Undisclosed		Skin inflammation			
	Shire	Undisclosed		Undisclosed			

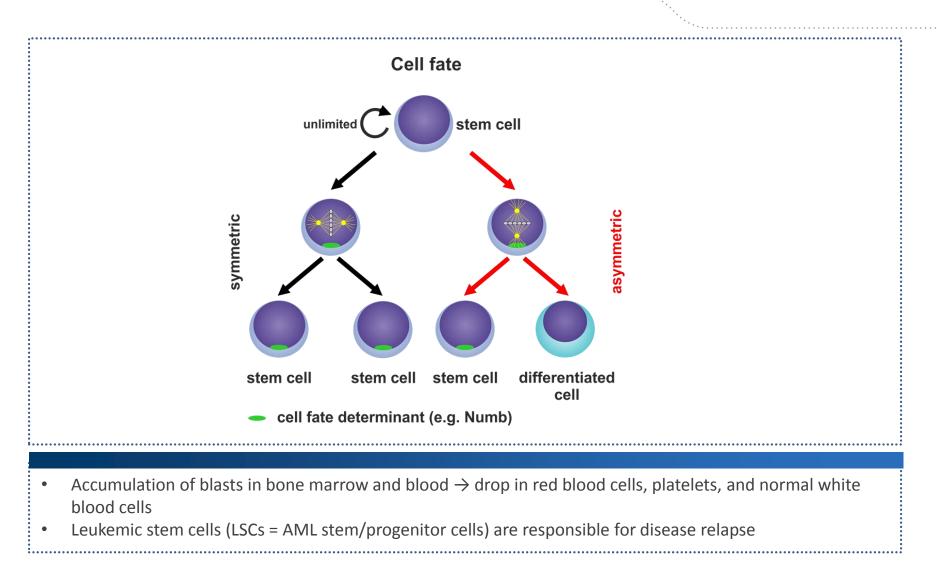


ARGX-110 in AML

10,000

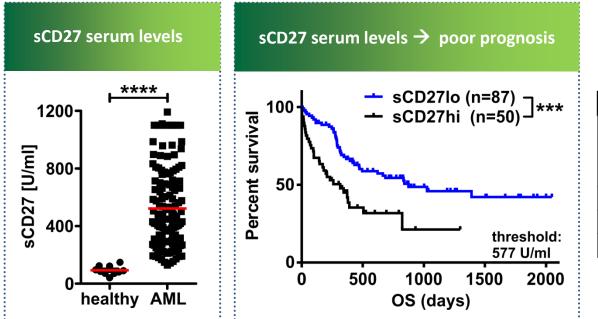
Acute Myeloid Leukemia (AML): high unmet need

Epidemiology


- Worst 5Y survival rate of heme malignancies
- 3.8/100'000 per year, median age: 70, incidence increases with age
- 5-year survival when adverse risk: 5-20%
 (25-30% of pts)

Very high unmet medical need

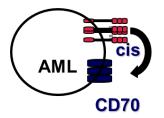
- Younger patients effectively treated with transplant and chemotherapy
- Older patients (>65) unfit for transplant receive palliative treatment (40% of pts on Azacitidine)

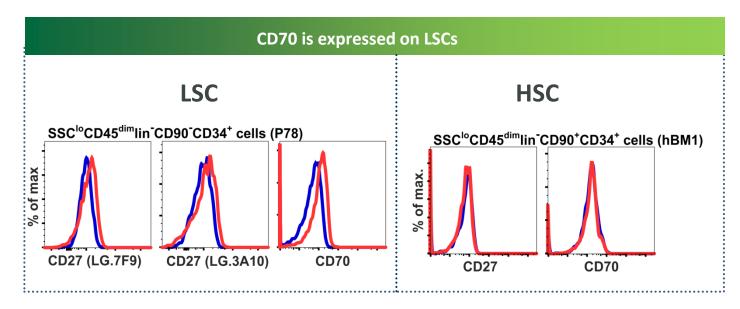


AML: Leukemic stem cells responsible for disease relapse

Indication for CD70/CD27 signaling in AML patients

parameter	HR (95% CI)	p-value
parameter		p-value
sCD27	2.17 (1.34-3.50)	0.0016
risk group	1.69 (1.29-2.38)	0.0024
age	1.03 (1.01-1.05)	0.0050
BM blast %	0.99 (0.98-1.00)	0.1259
blood blast %	1.00 (0.99-1.01)	0.9329
blood leukocyte #	1.00 (0.99-1.01)	0.6558


sCD27 serum levels:


- biomarker for active CD70/CD27 signaling in vivo
- increased in serum of AML patients
- independent negative prognostic marker across entire patient population

ARGX-110: Rationale in AML

CD70/CD27 biology highly involved in newly diagnosed AML

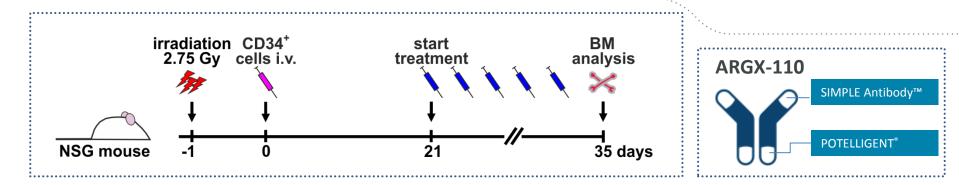
• CD70/CD27 selectively overexpressed on LSCs and not on hematopoietic stem cells (HSC)

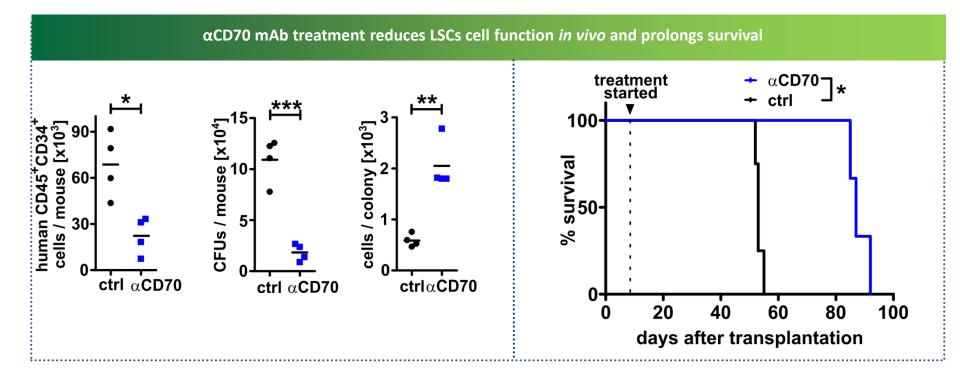
- CD70 expressed on ~100% of AML blasts, majority of malignant cells are CD70/CD27 double-positive
- ARGX-110: selective targeting of LSCs

ARGX-110: Leukemic stem cell function ex vivo

Long-term effects ex vivo

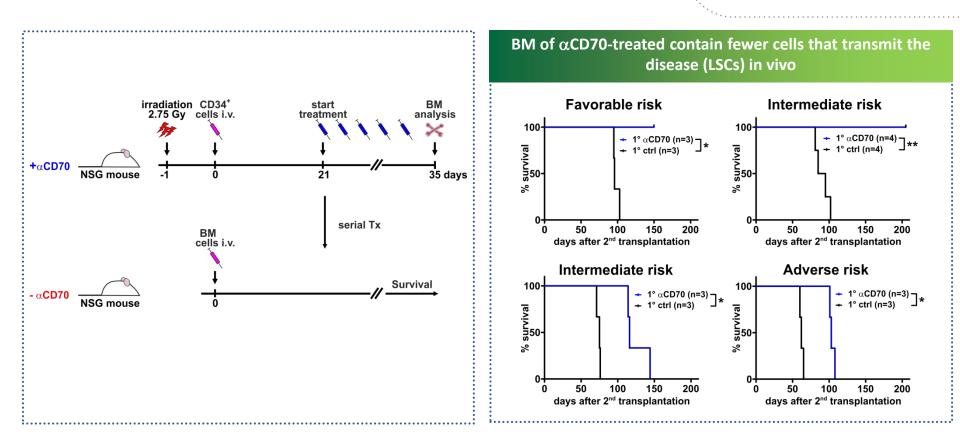
 \bullet $\alpha CD70$ Ab reduces colony formation of LSC


 \bullet $\alpha CD70$ Ab reduces LSC numbers as determined in serial re-plating experiments



ARGX-110: Periodic treatment

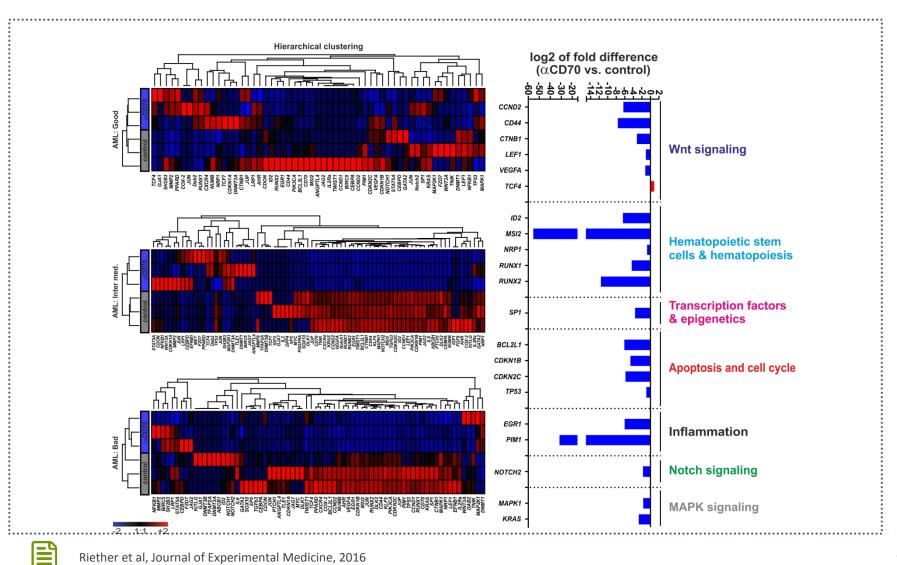
Reduction of LSCs cell numbers and function



Ë

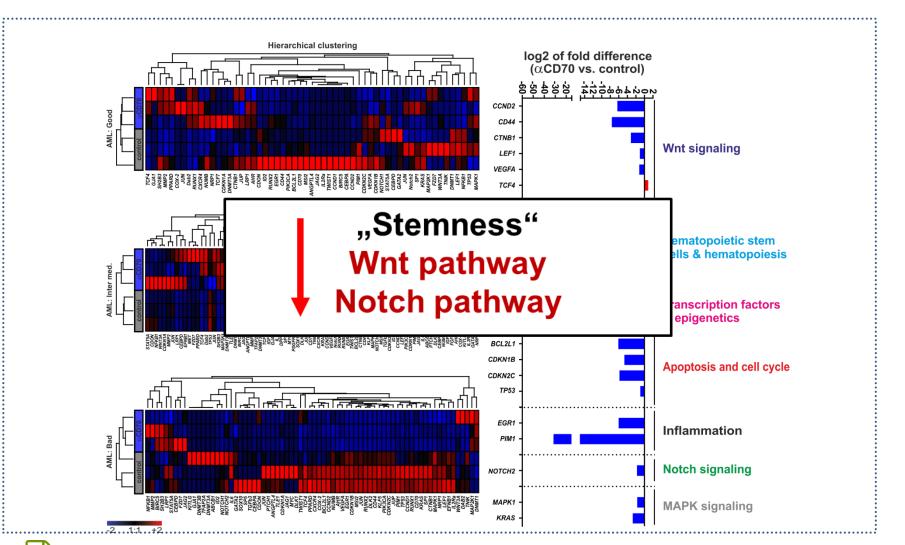
ARGX-110: Periodic treatment

Long-term effects in vivo


- Increased survival after secondary transplantation of AML BM cells from primary recipients transiently treated with αCD70 Ab
- Increased survival observed for AML blasts taken from all 3 AML risk categories

Ë

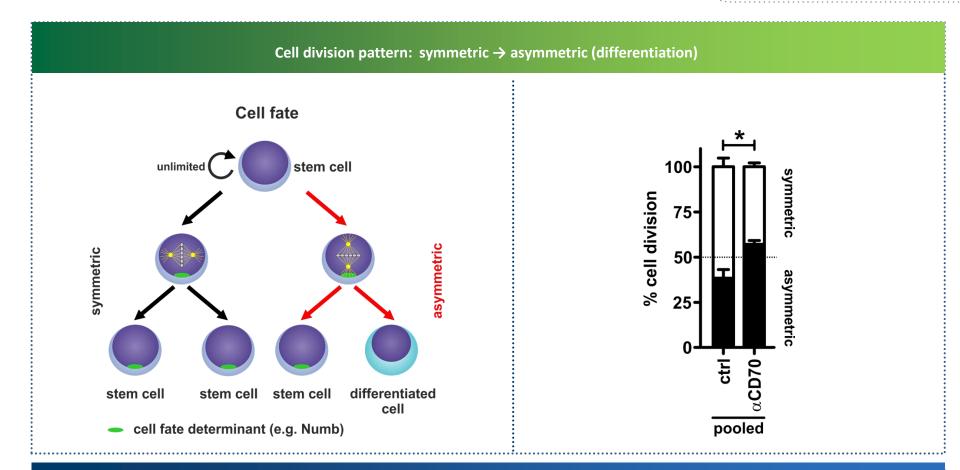
Blocking CD70/CD27 signaling



Reduction in stem cell characteristics – Transcriptome analysis

Blocking CD70/CD27 signaling

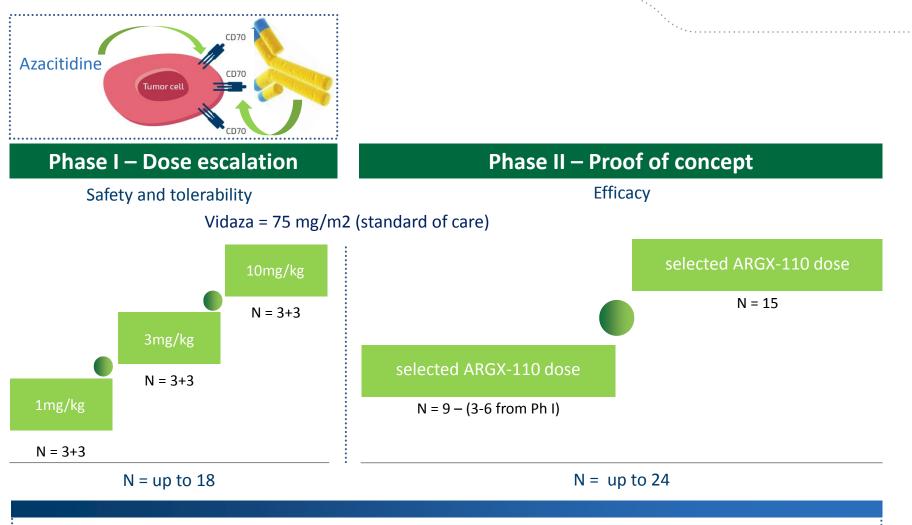
Reduction in stem cell characteristics



Blocking CD70/CD27 signaling

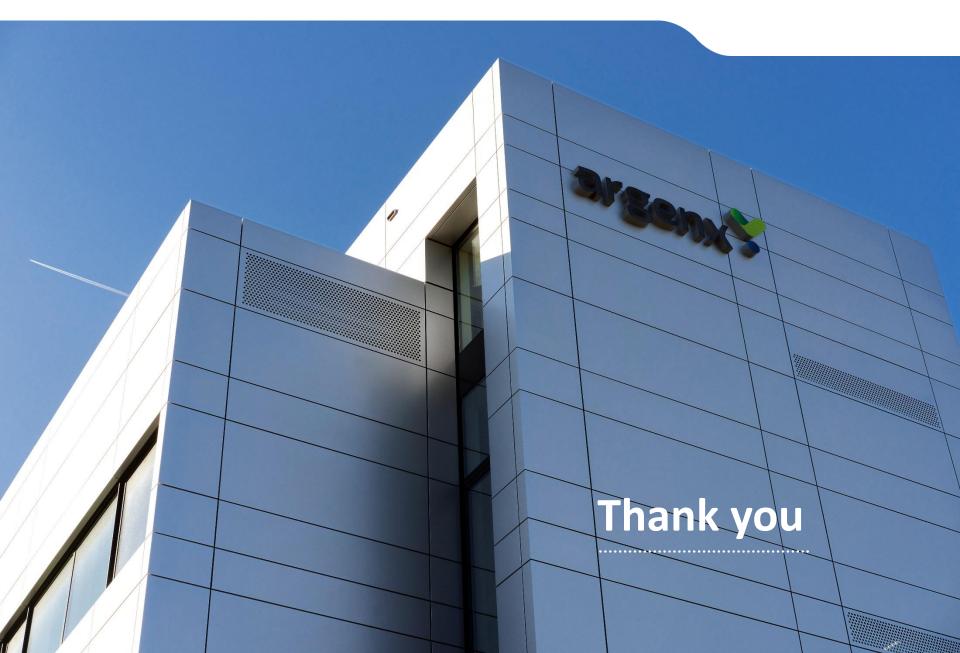
Induction of asymmetric division

• Treatment of patient AML blasts with α CD70 Ab:


reduced symmetric division

Ξ

increased myeloid differentiation



Phase I/II Combo ARGX-110 & Azacitidine: trial design

- Population: untreated AML & high risk of myelodysplastic syndrome, eligible for AZA
- Design: open-label, non-controlled, non-randomized

